
Canadian Journal of Pure and Applied Sciences
Vol. 15, No. 3, pp. 5333-5340, Oct 2021
Online ISSN: 1920-3853; Print ISSN: 1715-9997
Available online at www.cjpas.net

THE SHAPE OF A PHOTON

Christopher C. O’Neill

University College Dublin (UCD), Belfield, Dublin, Ireland

ABSTRACT

This paper deals with partial confirmation of the shape of a photon via a new kind of mathematics, where imaginary
numbers are privileged over real numbers when an absolute value is given, by the way of the XNOR logic gate. The
research begins with polynomials and then progresses from a planar wave form to a final and more accurate radial wave
form. This research study reveals the mechanism behind the results of the Double Slit experiment.

Keywords: Photon shape, logic operators, complex numbers.

INTRODUCTION TO MULTI-DIMENSIONAL
SPACE

Imaginary numbers are invaluable in many areas of
mathematics, physics, and engineering. But in general,
they are abstract entities with no real-world analog. This,
however, is not true, in the strange world of Quantum
Mechanics, where imaginary numbers take on a real and –
in some sense – measurable significance. Recent
developments in our understanding of imaginary numbers
have led people to equate the Real number system with
the XOR logic gate and the Imaginary number system
with XNOR (Gode, 2014; Hayes, 2018; O’Neill, 2021).

In quantum mechanics, imaginary numbers are used to
explain and represent the fact that a particle’s momentum
and position are two different and interlinked properties
of the particle, for instance,

In this most simple example of a plane wave, we see the
variable ‘i’ as an exponent value. Knowing the
momentum of a particle exactly, in this equation, results
in its position being everywhere at once, and vice versa.
To avoid running into these infinities, these two
properties can only ever be known approximately. This
level of uncertainty is a consequence of the Schrödinger
Equation and the Heisenberg Uncertainty Principle and is
a direct consequence of the imaginary number or ‘i’.

To demonstrate this relationship between momentum and
position, the imaginary part of the wave function must be

raised to its power. This cancels out the imaginary part of
the equation to give the absolute value. A similar result
can be achieved with XNOR (!∆) and XOR (∆). This is
because XOR and XNOR are noncommutative, !∆.∆ +
∆.!∆= 0, just like the Quaternions and Octonions. By
privileging the XNOR value, we can obtain a Real value
for Complex numbers. Note that this value is different to
the absolute square mod and leads to different physical
results. Therefore, it is important not to get them confused
with one another. The equation must be run twice; once in
XNOR and then in XOR, and the results of both equations
are summed together.

Using a simple polynomial example, we obtain

(x!∆ + y∆)(x!∆ + y∆)
a: – x!∆2 – 2x!∆y∆ – y∆
b: x!∆2 + 2x!∆y∆ + y∆

a + b = 0

Using this polynomial equation, it is possible to graph
various surfaces in both XOR and XNOR spaces. The
XOR universe has three spatial dimensions. The fourth
spatial dimension is the XNOR imaginary axis. When the
three coordinates of the real axes are combined with the
fourth imaginary axis, they always cancel each other out.
This cancellation results in the flat plane that denotes the
particle being in all positions or momentums at once.

Plotting the above example in dimensions ‘∆, ∆, !∆’ gives
the result shown in Figure 1. Whereas plotting ‘∆, ∆, ∆,
!∆’, which is a fourth-dimensional coordinate, results in
the flat plane shown in Figure 2.

This achieves the same results as the complex quantum
mechanical equation with a minimum of effort. These ___

Corresponding author e-mail: chris.ozneill@gmail.com

Canadian Journal of Pure and Applied Sciences 5334

new multiplicative rule sets are called ‘Dimensional Gate
Operators’ (DGO) because they express dimensionality
through operators based on the logic gates.

Fig. 1. The quadratic curve (∆z + ∆y+ !∆x)3.

Fig. 2. Infinite plane (∆w + ∆z + ∆y+ !∆x)3.

A Better Example and Interference
When graphing the position or momentum of a particle, it
is more accurate to use waveforms than mere
polynomials. This waveform represents the exact
momentum of a particle at time t. Once again, applying
the XNOR and XOR gates to this returns the position
value for this wave function (Fig. 3). Since it is possible
to graph the XOR momentum-space component, it is a
trivial matter to calculate the XNOR position-space
component, which will simply be its inverse. This
scenario is shown in Figure 4.

Both wave functions have so far been graphed separately.
It is possible now to graph them simultaneously, see
Figure 5. This is something which is ordinarily forbidden
in quantum mechanics.

Fig. 3. Cos(∆x) waveform for the momentum of a particle.

Fig. 4. Cos(!∆x) waveform for the position of a particle.

Fig. 5. The exact momentum and position-state
superimposed.

From this perspective, it becomes apparent why the
Heisenberg Uncertainty Principle exists. The two wave
functions cancel out and what is left is the infinite value

O’Neill 5335

plane in the fourth dimension (Fig. 6). This cancellation is
like that of orthogonality in linear algebra. Although this
waveform is only a toy model, it reveals how particles
look, when viewed from both sides of the XOR and
XNOR axes simultaneously.

Fig. 6. The cancelled out infinite plane.

A More Complex Example
So far, a plane sine wave function has been employed to
describe fundamental particles. If a truer understanding is
to be had, it will be necessary to progress to a more
accurate model of the photon. For this, the author has
chosen initially the following Mexican Hat function:

This function z(x, y) produces the graph in XOR shown in
Figure 7.

Fig. 7. The Mexican Hat graph in XOR.

For practical reasons this model is too simple, as it does
not include the discrete nature of a particle that we might
expect to see. This will be remedied in the next section.
For now, consider Figure 8, or how the graph looks like in
XNOR (see in Appendix 1 for the computer code).

Notice how this ‘wave function’ – although it no longer
looks like a wave – curves downwards at the bottom. This
characteristic is suggestive of hyper-dimensionality and
has been observed in other higher-dimensional algebraic
graphs (https://chart-studio.plotly.com/~robotwax/931/#/).
There are also visible series of strange lines in Figure 8.
These lines represent the points at which the square roots
of the x2 and y2 are equal to zero. These points go to
infinity or are otherwise undefined. Their cross shape is
the result of the traces of the matrix
division/multiplication (depending on the used function).
By subtracting one infinity from another any real number
(real value) can be produced. In this case, the value of ‘1’
is provided. Adding in the value of –1 produces an
entirely different result, which will be examined later in
more detail.

Fig. 8. The XNOR Mexican Hat graph.

Fig. 9. The Parametric Mexican Hat graph with XOR as
the x-axis and XNOR as the y-axis.

The Parametric Mexican Hat graph with XOR as the x-
axis and XNOR as the y-axis is shown in Figure 9 (see in

Canadian Journal of Pure and Applied Sciences 5336

Appendix 2 for the computer code, where the interference
pattern is also shown). Another way to view these data is
to set the results of our XOR calculation as our y-axis and
the results of our XNOR calculation as our z-axis. This
means that the two separate results of the XOR and
XNOR calculation become a new coordinate set, which
obviously has its advantages, when visualizing 4-
dimensional space.

The waveform completely cancels out in 4D space,
leaving only the infinite values. This reveals that the
Mexican Hat diagram is not a valid waveform for the
photon. An even more complex is therefore needed.

An Even More Complex Example
Asides from some complications with sin, cos, and
exponential function, the mathematics in XNOR and its
confluence with XOR is simple and straight forward
enough. The function for a discrete wave packet in a 3D
XOR state is

Plotting this results in the image shown in Figure 10 (see
in Appendix 3 for the computer code).

Fig. 10. The XNOR exponential function.

Again, we see this cross-shape, where the x2 and y2

components are undefined. Previously this value had been
replaced with an ‘1’, but now a value of ‘– 0.8’ is more
expedient. This flattens the graph down to a much more
reasonable result (Fig. 11).

Fig. 11. The exponential XNOR graph.

Interestingly, this XNOR wave function for the photon
looks very similar to the theoretical predictions based on
the Schrödinger equation (Fig. 12b), as well as
experimental imaging evidence carried out by physicists
at the University of Warsaw (Fig. 12a). (Available at:
https://cosmosmagazine.com/physics/what-shape-is-a-
photon/). Graphing Figure 11 in purely XNOR gives the
result shown in Figure 13.

 (a) (b)
Fig. 12. (a) The theoretical predictions based on the
Schrödinger equation and (b) the experimental imaging
carried out by physicists at the University of Warsaw.

Fig. 13. The other XNOR exponential graph.

Fig. 14. The photon graph rotated by 90 degrees and
superimposed.

O’Neill 5337

Fig. 15. The result of summation of the graphs shown in
Figures 10 and 14.

With this more complex example, only half of the wave
function cancels itself out. This promises this result is at
least half right. To create a full XNOR momentum-space
waveform, it will be necessary to graph a spherical wave
front and then transform into XNOR. In leu of that, Figure
13 can be rotated by 90 degrees and summed with the
original graph that is shown in Figure 14. This produces
the result even closer to the result obtained at the
University of Warsaw. Summing the graph shown in
Figure 14 with the original flattened graph (Figure 10)
results in Figure 15 (see in Appendix 4 for the code).

The Flattened Mexican Hat
Let us examine what happens with the Parametric
Mexican Hat graph (see Fig. 9), when our undefined
variable is set to –1. The result shown in Figure 16 is the
decidedly flattened (and elongated) Mexican Hat. This is
reminiscent of the theoretical Alcubierre warp drive (Fig.
17), which operates by compressing space time in front of
a spacecraft and expanding the space behind it.

Fig. 16. The flattened Mexican Hat graph.

Fig. 17. The Alcubierre warp drive (Image source:
https://www.universetoday.com/77005/astronomy-
without-a-telescope-warp-drive-on-paper/).

Transformations of this kind can either be done on the
object in question (in this case a spacecraft) or on the
coordinate system surrounding them (in this case space
time). These transformations are logically considered
equivalent. However, notice that in the case of the
flattened Mexican Hat diagram, no such transformational
algorithm has been applied. Instead, the shape simply falls
out of the XNOR and XOR data, with the XNOR axis
privileged in the y-axis and the inclusion of the variable (–
1). This means that, according to the Dimensional Gate
Operator hypothesis, this is truly the momentum-state
information of our particle. This is what the wave
function of the photon looks like when it is travelling at
light speed. This is a remarkable confirmation of the
concepts set out early on in this paper, in the opinion of
the author.

If indeed this is an accurate depiction of the motion of the
particle, then there are numerous conclusions that can be
drawn from it. First, notice the similarity between this
graph and the Alcubierre warp drive. This drive is said to
function on negative matter, or exotic matter. Some
researchers have postulated that Dark Energy and Dark
Matter may be a type of negative matter that is driving the
expansion of the Universe (Farnes, 2018). If this is
correct, then the arithmetic of the Dark Matter Universe is
in XNOR. When a positive number is added to a positive
in XOR a positive value is obtained. But doing the same
thing in XNOR results in a negative. This is a good
description for negative matter and since the momentum-
state of the particle appears to be represented in XNOR, it
would appear all matter has a dark matter component to it.
This can potentially give us a way to test dark matter
theory. Make note that we say ‘appears’, as the
momentum-state is the second derivative of speed and
XNOR has, as yet, no such equivalent definition.

Fig. 18. 4-D XNOR space.

As mentioned earlier, the distortion of space time by any
negative energy is equivalent to distorting the metric
coordinate system. Notice how there is no distortion of
the metric in the ‘Flattened Mexican Graph’ (Fig. 16).
This implies that what is being depicted in this figure is
more akin to a traditional Doppler Effect than space time
warping. Precisely the same perspective can be applied to
the more complex wave function of the photon (Fig. 18).
Figure 18 shows a slice of what a photon looks like in 4-D

Canadian Journal of Pure and Applied Sciences 5338

XNOR space. It has a pressure front and a wake. The fact
that this can be derived without recourse to relativistic
motion, suggests that it is entirely non relativistic in
character.

CONCLUSION

Using the XNOR logic gates in place of imaginary
numbers can reproduce some of the results shown in the
Warsaw experimentation. This suggests a relationship
between the mathematics of XNOR space and particle
physics. The method therefore provides good insight into
these quantum systems. It also hints at the mechanism
behind the results of the Double Slit experiment.

REFERENCES

Alcubierre, M. 1994. The warp drive: Hyper-fast travel
within general relativity. Classical and Quantum Gravity.
11(5):L73. DOI: https://doi.org/10.1088/0264-9381/
11/5/001.

Farnes, JS. 2018. A unifying theory of dark energy and
dark matter: Negative masses and matter creation within a
modified ΛCDM framework. Astronomy and
Astrophysics. 620:A92-112. https://doi.org/10.1051/0004-
6361/201832898.

Gode, DB. 2014. Complex number theory without
imaginary number (i). Open Access Library Journal.
1(7):e856-869. DOI: https://doi.org/10.4236/ oalib.
1100856.

Hay, MA. 2016. Recursive distinctioning, tetracoding and
the symmetry properties of chiral Tetrahedral molecules.
Journal of Space Philosophy. 5(2):28-55. http://
keplerspaceinstitute.com/wpcontent/uploads/2017/11/JSP
-Fall-2016-11_Hay-Final.pdf.

Merli, PG., Missiroli, GF. and Pozzi, G. 1976. On the
statistical aspect of electron interference phenomena.
American Journal of Physics. 44(3):306-307. DOI:
https://doi.org/10.1119/1.10184.

O’Neill, CC. 2021. Reimagining complex numbers.
Canadian Journal of Pure and Applied Sciences.
15(2):5261-5268. DOI:https://doi.org/10.13140 /RG.2.2.
26666.44480/1.

Received: June 29, 2021; Revised: August 17, 2021;
Accepted: Sept 24, 2021

Copyright©2021, Christopher C. O’Neill . This is an open access article distributed under the

Creative Commons Attribution Non Commercial License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

O’Neill 5339

Appendix 1.
The Python code used in the generation of the kind of
graph shown in Figure 8.

t = np.linspace(-35, 35, 300)
c = []
lo = []
p = []
for x in t:
for y in t:
 s = math.sin(math.sqrt(x**2 +
y**2))/(math.sqrt(x**2 + y**2))
 a = (x**2)*-1
 b = (y**2)*-1
if b < 0:
 a1 = a + (b*-1)
elif b > 0:
 a1 = a - b
else:
 a1 = 1
try:
 c1 = (math.sqrt(a1))*-1
exceptValueError:
 c1 = 1
if c1 == 0:
 c1 = 1
try:
 g = math.sqrt(a1)*-1
exceptValueError:
 g = 1
gb = math.sin(g/c1)*-1
 r = s + gb
p.append(gb)
c.append(x)
lo.append(y)
data = [go.Mesh3d(
 x = c,
 y = lo,
 z = p
),
]
layout = go.Layout(dict(title='Sine',
titlefont= {"size": 14},
font={'color':'black'},
paper_bgcolor= 'white',
plot_bgcolor= "white",
hovermode='closest',
xaxis={"range":[-15, 15]}))
figure = dict(data=data, layout = layout)
iplot(figure)

Appendix 2.
The computer code for the graph shown in Figure 9. If
c1==-1 and [x, y, z] == [c, p, lo], the graph in Figure 16
(the squashed Mexican Hat graph) is obtained:

t = np.linspace(-15, 15, 100)
c = []
lo = []
p = []
for x in t:
for y in t:
 s = math.sin(math.sqrt(x**2 +
y**2))/(math.sqrt(x**2 + y**2))
 a = (x**2)*-1
 b = (y**2)*-1
if b < 0:
 a1 = a + (b*-1)
elif b > 0:
 a1 = a - b
else:
 a1 = -1
try:
 c1 = (math.sqrt(a1))*-1
exceptValueError:
 c1 = -1
if c1 == 0:
 c1 = -1
try:
 g = math.sqrt(a1)*-1
exceptValueError:
 g = -1
gb = math.sin(g/c1)*-1
 r = s + gb
p.append(gb)
c.append(x)
lo.append(s)

data = [go.Mesh3d(
 x = c,
 y = lo,
 z = p
),
]
layout = go.Layout(dict(title='Photon XOR XNOR',
titlefont= {"size": 14},
font={'color':'black'},
paper_bgcolor= 'white',
plot_bgcolor= "white",
hovermode='closest',
xaxis={"range":[-1, 1]}))
figure = dict(data=data, layout = layout)
iplot(figure)

Also, steps can be taken to extract the data from Figure 9,
which results in the interference pattern shown in Figure
19 below.

The reader should note however that this is not a new
interference pattern. It is simply the Mexican Hat diagram

Canadian Journal of Pure and Applied Sciences 5340

viewed in a different way. However, the ‘spikes’ shown
in Figure 9 would produce the correct, although inverted,
interference result (Merli et al., 1976).

Fig. 19. The interference pattern.

Appendix 3.
The computer code for the graph shown in Figures 10 is
below. To produce the graph shown in Figure 11, simply
change ‘a1 = 1’ to ‘a1 = -1’ or minus phi.

t = np.linspace(-4, 4, 100)
c = []
lo = []
p = []
ee = []
fe = []
pv = []
uu = []

met=-1.2

tet= 10

for x in t:
for y in t:
 s =
2*math.exp(met*math.sqrt(x**2+y**2))*math.cos(((tet*
math.sqrt(x**2+y**2))))*math.cos(x**2+y**2)
 a = (x**2)*-1
 b = (y**2)*-1
if b < 0:
 a1 = a + (b*-1)
elif b > 0:
 a1 = a - b
else:
 a1 = 1
try:
 c1 = (math.sqrt(a1))*-1
exceptValueError:
 c1 = 1
 tet2 = ((met*c1)*-1)
if tet2 <= 0:
 tet3 = math.exp(tet2)
elif tet2 > 0:
 tet3 = (math.exp(tet2))-tet2
gb = ((2*tet3)*-1)*(math.cos(((tet*c1)*-1))*-1)
 gb1 = (math.cos(c1)*-1)

 gb2 = (gb*gb1)*-1
 m = s + gb2
if gb2 < 0:
 r = (s+(gb2*-1))
elif gb2 > 0:
 r = (s-gb2)
qq = s + r
uu.append(m)
p.append(r)
pv.append(qq)
ee.append(s)
fe.append(gb2)
c.append(x)
lo.append(y)
data = [go.Mesh3d(
 x = c,
 y = lo,
 z = pv
),
]
layout = go.Layout(dict(title='Photon XNOR',
titlefont= {"size": 14},
font={'color':'black'},
paper_bgcolor= 'white',
plot_bgcolor= "white",
hovermode='closest'))
figure = dict(data=data, layout = layout)
iplot(figure)

Appendix 4.
Change the ‘z’ parameter to ‘o11’, ‘o13’, or ‘o14’ to
produce the graphs shown in Figures 13, 14, and 15,
respectively.

ou9 = np.array(fe).reshape(100, 100)
o10 = np.rot90(ou9, 1)
o11, o12 = np.ravel(ou9), np.ravel(o10)
o13 = [o11[i]+o12[i] for i in range(len(pv))]
o14 = [pv[i]+o12[i] for i in range(len(pv))]
data = [go.Mesh3d(
 x = c,
 y = lo,
 z = o13
),
]
layout = go.Layout(dict(title='Photon XNOR',
titlefont= {"size": 14},
font={'color':'black'},
paper_bgcolor= 'white',
plot_bgcolor= "white",
hovermode='closest'))
figure = dict(data=data, layout = layout)
iplot(figure)

