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ABSTRACT 
 
This paper deals with partial confirmation of the shape of a photon via a new kind of mathematics, where imaginary 
numbers are privileged over real numbers when an absolute value is given, by the way of the XNOR logic gate. The 
research begins with polynomials and then progresses from a planar wave form to a final and more accurate radial wave 
form. This research study reveals the mechanism behind the results of the Double Slit experiment. 
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INTRODUCTION TO MULTI-DIMENSIONAL 
SPACE  
 
Imaginary numbers are invaluable in many areas of 
mathematics, physics, and engineering. But in general, 
they are abstract entities with no real-world analog. This, 
however, is not true, in the strange world of Quantum 
Mechanics, where imaginary numbers take on a real and – 
in some sense – measurable significance. Recent 
developments in our understanding of imaginary numbers 
have led people to equate the Real number system with 
the XOR logic gate and the Imaginary number system 
with XNOR (Gode, 2014; Hayes, 2018; O’Neill, 2021).  
 
In quantum mechanics, imaginary numbers are used to 
explain and represent the fact that a particle’s momentum 
and position are two different and interlinked properties 
of the particle, for instance,  
 

 
 
In this most simple example of a plane wave, we see the 
variable ‘i’ as an exponent value. Knowing the 
momentum of a particle exactly, in this equation, results 
in its position being everywhere at once, and vice versa. 
To avoid running into these infinities, these two 
properties can only ever be known approximately. This 
level of uncertainty is a consequence of the Schrödinger 
Equation and the Heisenberg Uncertainty Principle and is 
a direct consequence of the imaginary number or ‘i’. 
 
 
To demonstrate this relationship between momentum and 
position, the imaginary part of the wave function must be 

raised to its power. This cancels out the imaginary part of 
the equation to give the absolute value. A similar result 
can be achieved with XNOR (!∆) and XOR (∆). This is 
because XOR and XNOR are noncommutative, !∆.∆ + 
∆.!∆= 0, just like the Quaternions and Octonions. By 
privileging the XNOR value, we can obtain a Real value 
for Complex numbers. Note that this value is different to 
the absolute square mod and leads to different physical 
results. Therefore, it is important not to get them confused 
with one another. The equation must be run twice; once in 
XNOR and then in XOR, and the results of both equations 
are summed together.  
 
Using a simple polynomial example, we obtain 
 

(x!∆ + y∆)(x!∆ + y∆) 
a: – x!∆2 – 2x!∆y∆ – y∆ 
b: x!∆2 + 2x!∆y∆ + y∆ 

a + b = 0 
 
Using this polynomial equation, it is possible to graph 
various surfaces in both XOR and XNOR spaces. The 
XOR universe has three spatial dimensions. The fourth 
spatial dimension is the XNOR imaginary axis. When the 
three coordinates of the real axes are combined with the 
fourth imaginary axis, they always cancel each other out. 
This cancellation results in the flat plane that denotes the 
particle being in all positions or momentums at once.  
 
Plotting the above example in dimensions ‘∆, ∆, !∆’ gives 
the result shown in Figure 1. Whereas plotting ‘∆, ∆, ∆, 
!∆’, which is a fourth-dimensional coordinate, results in 
the flat plane shown in Figure 2.  
 
This achieves the same results as the complex quantum 
mechanical equation with a minimum of effort. These _____________________________________________________________________ 
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new multiplicative rule sets are called ‘Dimensional Gate 
Operators’ (DGO) because they express dimensionality 
through operators based on the logic gates. 
 

 
Fig. 1. The quadratic curve (∆z + ∆y+ !∆x)3.  
 

 
Fig. 2. Infinite plane (∆w + ∆z + ∆y+ !∆x)3.  
 
 
A Better Example and Interference 
When graphing the position or momentum of a particle, it 
is more accurate to use waveforms than mere 
polynomials. This waveform represents the exact 
momentum of a particle at time t. Once again, applying 
the XNOR and XOR gates to this returns the position 
value for this wave function (Fig. 3). Since it is possible 
to graph the XOR momentum-space component, it is a 
trivial matter to calculate the XNOR position-space 
component, which will simply be its inverse. This 
scenario is shown in Figure 4.  
 

Both wave functions have so far been graphed separately. 
It is possible now to graph them simultaneously, see 
Figure 5. This is something which is ordinarily forbidden 
in quantum mechanics.  
 

 
Fig. 3. Cos(∆x) waveform for the momentum of a particle.  
 

 
Fig. 4. Cos(!∆x) waveform for the position of a particle.  
 

 
Fig. 5. The exact momentum and position-state 
superimposed. 
 
From this perspective, it becomes apparent why the 
Heisenberg Uncertainty Principle exists. The two wave 
functions cancel out and what is left is the infinite value 
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plane in the fourth dimension (Fig. 6). This cancellation is 
like that of orthogonality in linear algebra. Although this 
waveform is only a toy model, it reveals how particles 
look, when viewed from both sides of the XOR and 
XNOR axes simultaneously. 

 
Fig. 6. The cancelled out infinite plane. 
 
A More Complex Example 
So far, a plane sine wave function has been employed to 
describe fundamental particles. If a truer understanding is 
to be had, it will be necessary to progress to a more 
accurate model of the photon. For this, the author has 
chosen initially the following Mexican Hat function:  

 
This function z(x, y) produces the graph in XOR shown in 
Figure 7.  
 

 
Fig. 7. The Mexican Hat graph in XOR. 
 
For practical reasons this model is too simple, as it does 
not include the discrete nature of a particle that we might 
expect to see. This will be remedied in the next section. 
For now, consider Figure 8, or how the graph looks like in 
XNOR (see in Appendix 1 for the computer code). 

Notice how this ‘wave function’ – although it no longer 
looks like a wave – curves downwards at the bottom. This 
characteristic is suggestive of hyper-dimensionality and 
has been observed in other higher-dimensional algebraic 
graphs (https://chart-studio.plotly.com/~robotwax/931/#/). 
There are also visible series of strange lines in Figure 8. 
These lines represent the points at which the square roots 
of the x2 and y2 are equal to zero. These points go to 
infinity or are otherwise undefined. Their cross shape is 
the result of the traces of the matrix 
division/multiplication (depending on the used function). 
By subtracting one infinity from another any real number 
(real value) can be produced. In this case, the value of ‘1’ 
is provided. Adding in the value of –1 produces an 
entirely different result, which will be examined later in 
more detail.  
 

 
Fig. 8. The XNOR Mexican Hat graph. 
 

 
Fig. 9. The Parametric Mexican Hat graph with XOR as 
the x-axis and XNOR as the y-axis. 
 
The Parametric Mexican Hat graph with XOR as the x-
axis and XNOR as the y-axis is shown in Figure 9 (see in 
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Appendix 2 for the computer code, where the interference 
pattern is also shown). Another way to view these data is 
to set the results of our XOR calculation as our y-axis and 
the results of our XNOR calculation as our z-axis. This 
means that the two separate results of the XOR and 
XNOR calculation become a new coordinate set, which 
obviously has its advantages, when visualizing 4-
dimensional space. 
 
The waveform completely cancels out in 4D space, 
leaving only the infinite values. This reveals that the 
Mexican Hat diagram is not a valid waveform for the 
photon. An even more complex is therefore needed. 
 
An Even More Complex Example 
Asides from some complications with sin, cos, and 
exponential function, the mathematics in XNOR and its 
confluence with XOR is simple and straight forward 
enough. The function for a discrete wave packet in a 3D 
XOR state is 

 
Plotting this results in the image shown in Figure 10 (see 
in Appendix 3 for the computer code).  
 

 
Fig. 10. The XNOR exponential function. 
 
Again, we see this cross-shape, where the x2 and y2 

components are undefined. Previously this value had been 
replaced with an ‘1’, but now a value of ‘– 0.8’ is more 
expedient. This flattens the graph down to a much more 
reasonable result (Fig. 11).  
 

 
Fig. 11. The exponential XNOR graph. 

Interestingly, this XNOR wave function for the photon 
looks very similar to the theoretical predictions based on 
the Schrödinger equation (Fig. 12b), as well as 
experimental imaging evidence carried out by physicists 
at the University of Warsaw (Fig. 12a). (Available at: 
https://cosmosmagazine.com/physics/what-shape-is-a-
photon/). Graphing Figure 11 in purely XNOR gives the 
result shown in Figure 13.  
 

 
     (a)    (b) 
Fig. 12. (a) The theoretical predictions based on the 
Schrödinger equation and (b) the experimental imaging 
carried out by physicists at the University of Warsaw.  
 

 
Fig. 13. The other XNOR exponential graph. 
 

 
Fig. 14. The photon graph rotated by 90 degrees and 
superimposed.  
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Fig. 15. The result of summation of the graphs shown in 
Figures 10 and 14. 
 
With this more complex example, only half of the wave 
function cancels itself out. This promises this result is at 
least half right. To create a full XNOR momentum-space 
waveform, it will be necessary to graph a spherical wave 
front and then transform into XNOR. In leu of that, Figure 
13 can be rotated by 90 degrees and summed with the 
original graph that is shown in Figure 14. This produces 
the result even closer to the result obtained at the 
University of Warsaw. Summing the graph shown in 
Figure 14 with the original flattened graph (Figure 10) 
results in Figure 15 (see in Appendix 4 for the code). 
 
The Flattened Mexican Hat 
Let us examine what happens with the Parametric 
Mexican Hat graph (see Fig. 9), when our undefined 
variable is set to –1. The result shown in Figure 16 is the 
decidedly flattened (and elongated) Mexican Hat. This is 
reminiscent of the theoretical Alcubierre warp drive (Fig. 
17), which operates by compressing space time in front of 
a spacecraft and expanding the space behind it.  

 
Fig. 16. The flattened Mexican Hat graph. 
 

 
Fig. 17. The Alcubierre warp drive (Image source: 
https://www.universetoday.com/77005/astronomy-
without-a-telescope-warp-drive-on-paper/).  

Transformations of this kind can either be done on the 
object in question (in this case a spacecraft) or on the 
coordinate system surrounding them (in this case space 
time). These transformations are logically considered 
equivalent. However, notice that in the case of the 
flattened Mexican Hat diagram, no such transformational 
algorithm has been applied. Instead, the shape simply falls 
out of the XNOR and XOR data, with the XNOR axis 
privileged in the y-axis and the inclusion of the variable (–
1). This means that, according to the Dimensional Gate 
Operator hypothesis, this is truly the momentum-state 
information of our particle. This is what the wave 
function of the photon looks like when it is travelling at 
light speed. This is a remarkable confirmation of the 
concepts set out early on in this paper, in the opinion of 
the author. 
 
If indeed this is an accurate depiction of the motion of the 
particle, then there are numerous conclusions that can be 
drawn from it. First, notice the similarity between this 
graph and the Alcubierre warp drive. This drive is said to 
function on negative matter, or exotic matter. Some 
researchers have postulated that Dark Energy and Dark 
Matter may be a type of negative matter that is driving the 
expansion of the Universe (Farnes, 2018). If this is 
correct, then the arithmetic of the Dark Matter Universe is 
in XNOR. When a positive number is added to a positive 
in XOR a positive value is obtained. But doing the same 
thing in XNOR results in a negative. This is a good 
description for negative matter and since the momentum-
state of the particle appears to be represented in XNOR, it 
would appear all matter has a dark matter component to it. 
This can potentially give us a way to test dark matter 
theory. Make note that we say ‘appears’, as the 
momentum-state is the second derivative of speed and 
XNOR has, as yet, no such equivalent definition. 
 

 
Fig. 18. 4-D XNOR space. 
 
As mentioned earlier, the distortion of space time by any 
negative energy is equivalent to distorting the metric 
coordinate system. Notice how there is no distortion of 
the metric in the ‘Flattened Mexican Graph’ (Fig. 16). 
This implies that what is being depicted in this figure is 
more akin to a traditional Doppler Effect than space time 
warping. Precisely the same perspective can be applied to 
the more complex wave function of the photon (Fig. 18). 
Figure 18 shows a slice of what a photon looks like in 4-D  
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XNOR space. It has a pressure front and a wake. The fact 
that this can be derived without recourse to relativistic 
motion, suggests that it is entirely non relativistic in 
character. 
 
CONCLUSION  
 
Using the XNOR logic gates in place of imaginary 
numbers can reproduce some of the results shown in the 
Warsaw experimentation. This suggests a relationship 
between the mathematics of XNOR space and particle 
physics. The method therefore provides good insight into 
these quantum systems. It also hints at the mechanism 
behind the results of the Double Slit experiment.  
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Appendix 1. 
The Python code used in the generation of the kind of 
graph shown in Figure 8. 
 
t = np.linspace(-35, 35, 300) 
c = [] 
lo = [] 
p = [] 
for x in t: 
for y in t: 
        s = math.sin(math.sqrt(x**2 + 
y**2))/(math.sqrt(x**2 + y**2)) 
        a = (x**2)*-1 
        b = (y**2)*-1 
if b < 0: 
            a1 = a + (b*-1) 
elif b > 0: 
            a1 = a - b 
else: 
            a1 = 1 
try: 
            c1 = (math.sqrt(a1))*-1 
exceptValueError: 
            c1 = 1 
if c1 == 0: 
            c1 = 1 
try: 
            g = math.sqrt(a1)*-1 
exceptValueError: 
            g = 1 
gb = math.sin(g/c1)*-1 
        r = s + gb 
p.append(gb) 
c.append(x) 
lo.append(y) 
data = [go.Mesh3d( 
                x = c, 
                y = lo, 
                z = p 
            ), 
        ] 
layout = go.Layout(dict(title='Sine', 
titlefont= {"size": 14}, 
font={'color':'black'}, 
paper_bgcolor= 'white', 
plot_bgcolor= "white", 
hovermode='closest', 
xaxis={"range":[-15, 15]})) 
figure = dict(data=data, layout = layout) 
iplot(figure) 
 
 
Appendix 2. 
The computer code for the graph shown in Figure 9. If 
c1==-1 and [x, y, z] == [c, p, lo], the graph in Figure 16 
(the squashed Mexican Hat graph) is obtained: 
 

t = np.linspace(-15, 15, 100) 
c = [] 
lo = [] 
p = [] 
for x in t: 
for y in t: 
        s = math.sin(math.sqrt(x**2 + 
y**2))/(math.sqrt(x**2 + y**2)) 
        a = (x**2)*-1 
        b = (y**2)*-1 
if b < 0: 
            a1 = a + (b*-1) 
elif b > 0: 
            a1 = a - b 
else: 
            a1 = -1 
try: 
            c1 = (math.sqrt(a1))*-1 
exceptValueError: 
            c1 = -1 
if c1 == 0: 
            c1 = -1 
try: 
            g = math.sqrt(a1)*-1 
exceptValueError: 
            g = -1 
gb = math.sin(g/c1)*-1 
        r = s + gb 
p.append(gb) 
c.append(x) 
lo.append(s) 
 

data = [go.Mesh3d( 
                x = c, 
                y = lo, 
                z = p 
            ), 
        ] 
layout = go.Layout(dict(title='Photon XOR XNOR', 
titlefont= {"size": 14}, 
font={'color':'black'}, 
paper_bgcolor= 'white', 
plot_bgcolor= "white", 
hovermode='closest', 
xaxis={"range":[-1, 1]})) 
figure = dict(data=data, layout = layout) 
iplot(figure) 
 
 
Also, steps can be taken to extract the data from Figure 9, 
which results in the interference pattern shown in Figure 
19 below.  
 
The reader should note however that this is not a new 
interference pattern. It is simply the Mexican Hat diagram 
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viewed in a different way. However, the ‘spikes’ shown 
in Figure 9 would produce the correct, although inverted, 
interference result (Merli et al., 1976). 
 

 
Fig. 19. The interference pattern. 
 
 
Appendix 3. 
The computer code for the graph shown in Figures 10 is 
below. To produce the graph shown in Figure 11, simply 
change ‘a1 = 1’ to ‘a1 = -1’ or minus phi. 
 
t = np.linspace(-4, 4, 100) 
c = [] 
lo = [] 
p = [] 
ee = [] 
fe = [] 
pv = [] 
uu = [] 
 
met=-1.2 
 
tet= 10 
 
for x in t: 
for y in t: 
        s = 
2*math.exp(met*math.sqrt(x**2+y**2))*math.cos(((tet*
math.sqrt(x**2+y**2))))*math.cos(x**2+y**2) 
        a = (x**2)*-1 
        b = (y**2)*-1 
if b < 0: 
            a1 = a + (b*-1) 
elif b > 0: 
            a1 = a - b 
else: 
            a1 = 1 
try: 
            c1 = (math.sqrt(a1))*-1 
exceptValueError: 
            c1 = 1 
        tet2 = ((met*c1)*-1) 
if tet2 <= 0: 
            tet3 = math.exp(tet2) 
elif tet2 > 0: 
            tet3 = (math.exp(tet2))-tet2 
gb = ((2*tet3)*-1)*(math.cos(((tet*c1)*-1))*-1) 
        gb1 = (math.cos(c1)*-1) 

        gb2 = (gb*gb1)*-1 
        m = s + gb2 
if gb2 < 0: 
            r = (s+(gb2*-1)) 
elif gb2 > 0: 
            r = (s-gb2) 
qq = s + r 
uu.append(m) 
p.append(r) 
pv.append(qq) 
ee.append(s) 
fe.append(gb2) 
c.append(x) 
lo.append(y) 
data = [go.Mesh3d( 
                x = c, 
                y = lo, 
                z = pv 
            ), 
        ] 
layout = go.Layout(dict(title='Photon XNOR', 
titlefont= {"size": 14}, 
font={'color':'black'}, 
paper_bgcolor= 'white', 
plot_bgcolor= "white", 
hovermode='closest')) 
figure = dict(data=data, layout = layout) 
iplot(figure) 
 
 
Appendix 4. 
Change the ‘z’ parameter to ‘o11’, ‘o13’, or ‘o14’ to 
produce the graphs shown in Figures 13, 14, and 15, 
respectively. 
 
ou9 = np.array(fe).reshape(100, 100) 
o10 = np.rot90(ou9, 1) 
o11, o12 = np.ravel(ou9), np.ravel(o10) 
o13 = [o11[i]+o12[i] for i in range(len(pv))] 
o14 = [pv[i]+o12[i] for i in range(len(pv))] 
data = [go.Mesh3d( 
                x = c, 
                y = lo, 
                z = o13 
            ), 
        ] 
layout = go.Layout(dict(title='Photon XNOR', 
titlefont= {"size": 14}, 
font={'color':'black'}, 
paper_bgcolor= 'white', 
plot_bgcolor= "white", 
hovermode='closest')) 
figure = dict(data=data, layout = layout) 
iplot(figure) 


